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EXECUTIVE SUMMARY

The first order reliability method (FORM) has traditionally been applied to
probabilistic fatigue analyses for single inspection intervals. ‘Accounting for
inspectioris then requires several sequential FORM analyses and that the random
distribution of crack lengths be recharacterized following each inspection. The
augmented FORM presented here allows the reliability analysis to span several
inspection periods without explicit characterization of the crack length distribution
subsequent to each inspection. The method thereby preserves the attractive feature of
FORM in that relatively few realizations in the random variable space need to be
considered. Examples are given which show that the present methodology gives
estimates which are in good agreement with Monte Carlo simulations and is efficient

even for complex components.
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1. INTRODUCTION,

Probabilistic fatigue methods are often applied in a setting where critical structural
components are subjected to inspections by non-destructive evaluation (NDE)
techniques so that crack can be identified and the component can be repaired or
replaced. Inspections can significantly reduce the probability of fatigue failure of
structures, - as well as increase the useful service lives. Quantified measures of
reliability (provided by probabilistic methods) can optimize the inspection schedule and
allow comparison of effectiveness for various inspection methods.

A risk analysis methodology for the assessment of structural integrity of aircraft
structures has been outlined by Berens, et al. (1991). This methodology, which is
based on the direct integration of the probability of failure, works well when the
number of random variables is relatively small and a single parameter characterization
of crack size is adequate. However, when it is useful to characterize crack growth in
detail, other modeling techniques such as Monte Carlo simulations (MCS) and the first
order reliability method (FORM) are needed for calculating probabilities of failure (see
Harkness, et al. (1992) and references therein). Traditionally, these latter techniques

‘have been applied to one inspection interval at a time. However, that approach

requires characterization of the crack size distribution (i.e., crack size probability
density function) following each inspection, which is difficult. Techniques for
recharacterizing crack size distributions after each inspection with FORM are discussed
in Rahman and Rice (1992).

An alternative approach is given here which does not require recharacterization of the
crack size distribution. The first order reliability method is augmented to account for
the effects of the inspections so that the -crack size distribution need only be
characterized at an initial state. This is of considerable advantage since
recharacterizations of the crack length distribution are often tedious or iinpractical. In
the present work, it is assumed that components with detected cracks are repaired such
that their subsequent likelihood of failure is negligible.

In Section 2, the standard FORM and its application to fatigue reliability are reviewed.
The introduction of non-destructive evaluation (NDE) into the fatigue reliability
problem is discussed in Section 3 along with a description of the augmentation of
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FORM to efficiently treat multiple inspections. The first part of section 3 is devoted to
identifying the quantities of interest in a fatigue reliability analysis with in-service
inspections; techniques to evaluate these quantities are given in the remainder of the
section. An important aspect of FORM is finding the so-called design points. An
algorithm for this task which is applicable to both the standard FORM and the
augmented FORM is provided in the Appendix A.

Two numerical examples are presented in Section 4. The first example investigates the
accuracy of augmented FORM by comparison to MCS results. A more complex
fatigue problem is studied in the second example where the MCS approach is not
computationally feasible; here the augmented FORM requires only minutes of CPU
time on a workstation. In these examples, the inspection schedule is adjusted so that
inspections occur when the probability of failure reaches a spemﬁed value. Further
discussion and concluding remarks are given in Section 5.

2. FIRST ORDER RELIABILITY METHOD.

2.1 STANDARD RELIABILITY STATEMENT.

We begin by defining a performance function, G(x), which distinguishes between safe
and unsafe realizations of the random variables x (see figure la). Performance
functions are typically defined so that positive outcomes indicate safe realizations and
negative outcomes indicate unsafe realizations (the limit case of G(x)=0 is often
included in the failure domain). The objective of a reliability analysis is to determine
the probability of failure

Pr = P[G(x) < 0], 2.1

which is given by

Py =[£G, 2.2)
o)




where Q; is the failure space (G(x)<0 ), and fx(x) is the joint probability density

function for realizations in the space of random variables x.

The random variables x are often non-normally distributed, rendering the integral in
equation (2.2) difficult to evaluate. To circumvent this difficulty, random variables x
are mapped to standardized equivalent normal random variables r, where each
component 7; is an independent Gaussian variable with zero mean and unit variance.
This mapping can be achieved via the Rosenblatt transformation (see Rosenblatt 1952;
Ang and Tang 1984)

_nl .
rl.—(D [F;.(xixl,xz,...,xi_l)} (2.3)

where F; is the conditional cumulative probability at x; given xz,x2,....%.7. In
standardized space, the performance function is transformed to g(r)=G(x(r)) and

equation (2.2) becomes

P= [ felede, 2.4)

where Q]rc is the failure space (g(r)<0) as in figure 1b, and fg(r) is the joint probability

density function for realizations of random variables r. The joint probability density
function, fgr(r), is simply the product of the probability density functions for all random

variables r; and is given by

£y =TT gzexn(=37), @.5)

The essence of FORM is to approximate the limit surface g(r)=0 by a tangent
hyperplane at the most likely point of failure, r4. In standard FORM the most likely
failure point is the point which minimizes the distance |r| to the failure surface. The
resulting “first order” estimate of the probability of failure is then given by

P = (-p), | 2.6)




where B=|r;| and ® is the standard normal cumulative distribution function. Because
the random variables r are Gaussian and normal, the decay of fr(r) is exponential and
identical for all random variables. Therefore, the closest point is the point at which
failure is most probable and it provides a good point for approximating the failure
surface to calculate the probability of failure using standard FORM. It will be shown
in Section 3.3 that the closest point may not be the most likely failure point when in-
service inspections are accounted for.

2.2 FATIGUE RELIABILITY.

In a fatigue setting, the failure set contains all realizations that result in fatigue lives
less than a desired service life, so an appropriate performance function is

G(x) = Ni(x) - N, (2.7)
or in standard Gaussian space

8(r) = Nax(r)) - N, 2.8)

where Ny is the fatigue life (which is influenced by several random variables) and N is
the desired service life. Note that the fatigue life may be defined as the number of
cycles for a crack to reach a specified critical size, which may not necessarily
correspond to catastrophic failure of the component. Failure is deemed to occur when
the Af\atigue life is shorter than the desired service life (§<0). Standard FORM
described above is often effective for estimating failure probability versus service life
in the absence of inspections or for estimating the probability of failure with
inspections when the crack length distribution following an inspection is known. In the
latter, a standard FORM analysis is performed for each inspection interval, and the
probability of failure is determined in each analysis. This approach requires knowledge
of the crack size distribution following each inspection. A more efficient method for
treating inspections is introduced in the following Section.




FATIGUE RELIABILITY AND IN-SERVICE ND P N

Consider a fatigue reliability setting where the component is subjected to in-service

NDE inspections according to some schedule. The inspection schedule may be

prescribed and the failure probabilities sought or conversely, the aim of the analysis

may be to determine an inspection schedule which will keep failure probabilities below

a specified level. Let N denote the service life (in cycles) and Nj denote the number of
cycles to the inspection prior to N. We seek a method to determine the fatigue

reliability (or alternatively failure probability) over the service life, N. As mentioned

previously, standard FORM techniques require a complete characterization of the

probability density function for the crack size following each inspection. However, an

exact determination of the crack size probability density function may be extremely

tedious or impractical to obtain especially for cracks in complicated geometries.

Rahman and Rice (1992) discuss a method based on the standard FORM to
recharacterize the crack size distribution at each inspection, but this method may

require extensive computations. In the following subsection, we introduce a

straightforward and efficient method based on the initial crack size distribution for

determining fatigue reliability with NDE inspections; explicit knowledge of the crack

size distribution at each inspection is not required.

3.1 STATEMENT OF RELIABILITY PROBLEM WITH NDE INSPECTIONS.

The probability of failure is defined here as the probability that the service life of the
component exceeds the fatigue life, where the fatigue life is determined strictly by
undetected cracks. Thus the probability of failure, Py, after N fatigue cycles, can be

written as

(v)=F(N, <N)n(0,=0,i=1,2,...,1)], 3.1

where I is the number of previous inspections at N cycles (N>Np), O; indicates the
outcome of the i-th inspection which is given by:

,« (3.2)

0 = 0 no crack detected in i” inspection
1 crack detected in i inspection




and Nr is the fatigue life. The outcome of each inspection is random due to
uncertainties in the inspection technique and the crack length at the time of the
inspection. Other functions which may be of particular interest can be derived from Py.
The hazard function (or failure rate) h(N) is given by

_ 1 ()
[1-P, (V)] oN

h(N) , (3.3)

The factor [1-P4 in equation 3.3 is typically very close to unity in a reliability analysis,
so the hazard function is 'effectively equal to the derivative of the probability of failure.
Another useful failure probability is the probability of failure since the last inspéction
(due to an undetected crack), ie.,

P,(N)=P[(N, <N, < N)n(0,=0,i= L,2,....7)], " (3.4)

where I is the number of previous inspections at N cycles, and Ny and O; are as
previously defined.

As in the standard FORM the random variable space can be transformed to
standardized Gaussian variable space. The probability density function for realizations
of r in this space is fr(r) (see equation 2.5). To derive an expression for the
probability of failure, Py, at cycle N which accounts for inspections, we require the
probability density function associated with realizations, r, for which the associated
cracks are undetected. The probability density function for realizations with undetected
cracks after the first / inspections, is given by

Ju() = fR(r)Pua(r, N). (3.5)

Here, Pp4(r, N) is the probability that cracks associated with the realization 7 are not
detected in all of the inspections prior to the current cycle, N, i.e., Puy(r,N) = P[O;=0
fori=1,2,.,I | 7], and is given by

Lu(r,N) =f]{1—POD[a(r,Nf)]}, 3.6)
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where PODl[a(r,N;j)] is the prqbability of detection for the inspection method and
a(r,N;) is the crack length upon the i inspection for the realization r.

The probability of failure is therefore given by

PrN)= [ fu(")By(rs NYdr, 3.7)
o : |
where Q} includes all r such that g<0 (i.e. N<N). The probability of failure since the
last inspection is given by
PrM)= [ fu()By(r, Ny dr, (3.8)
Y
where erI includes all r such that Ny<N<N, Note that the computation of Ny is not

influenced by the inspections, i.e., the failure surface g(r)=0 is not influenced by in-
service inspections. Rather, it is the integrands in equations (3.7) and (3.8) which

incorporate the effect of inspections on failure probability.

3.2 EVALUATION OF THE INTEGRAL FOR FAILURE PROBABILITY.

The integrals in Egs. (3.7) and (3.8) differ from that which arises in standard FORM
in that the integrands have been multiplied by the non-Gaussian function Ppa(r,N) and,
therefore, the integration technique must be modified to accurately integrate the
functions. A simple modification of the standard FORM integration procedure is
introduced here for the evaluation of the integral in equation (3.7). As in standard
FORM, the failure surface is approximated by a tangent hyperplane at the most likely
failure point, rg (the so-called design point). The shérp variation of Pu4(r,N) in the
direction of the gradient of g prevents the direct evaluation of the integral via the
standard normal cumulative distribution function, as in equation (2.6). Nevertheless,
we wish to maintain the essential structure of the FORM integration procedure and,

thus, it is convenient to discretize the domain Q} into subdomains as shown in figure 2.

By approximating Pp4(r,N) as constant over each subdomain we obtain




P (N)= i[ﬁid IfR(r)dQ:,, (3.9)

where ng is the number of subdomains and PLs is the approximation of P,4(r,N) in the
subdomain €);. The remaining integrands are the Gaussian distributed Jr(), so the
standard cumulative normal function @ is useful for “first order” approximations of
these integrals. Thus, equation (3.9) leads to approximations of the form

J]}+ Prio(-

where #/ is the integration point on the surface of the subdomain €2j as shown in figure

), (3.10)

r’

P/l (N) =g{ﬁid[®(—‘rf‘) - @(_!rj+1

2. In this numerical integration scheme, the ‘design point is taken as the first
integration point, i.e., 7/ = r4  Subsequent integration points are found by

r=[1+(j-1)8]r, (3.11)

where 1l is the position of the j# integration point and & is the desired step size for the
integration. The number of subdomains, the magnitude of 3, and the location, s of
the last integration point depend on the accuracy desired and can be deduced through
numerical experimentation and comparison with known solutions. A non-uniform
subdomain discretization can be used in place of equation (3.11) if desired. '

3.3 LOCATION OF DESIGN POINTS.

In standard applications of FORM, the most likely failure point can be shown to be the
point closest to the origin on the surface ¢=0 (Ang and Tang, 1984). The
approximation of the failure surface as a tangent hyperplane at the design point leads to
the first order approximation in equation (2.6). In the present application of FORM
with in-service inspections, the integrand in equation (3.7) contains the non-Gaussian
variable Pp4(r,N) and the most likely failure point is not, in general, the closest point to
the origin on g=0. The question then arises as to which point provides the most
appropriate first order approximation to the failure surface, i.e., where to locate the
design point. One possibility is to take the closest point to the origin on g=0 as in
standard FORM. However, due to variations in Ppg(r,N) along the surface g=0, an
alternative point is suggested which will maximize the integrand in equation (3.‘7).

8




A procedure for locating the design point at the most likely failure point on g=0 is
introduced here. By suitable choice of parameters, the algorithm can also be used to
locate the design point at the closest point to the origin. Consider B such that

O(—p) = P, (r, N)(-|r]). (3.12)

The design point is then taken to be the point on the surface g=0 which minimizes 3
(or maximizes the product Pn4(r,N)®(-|r|)). Typically, the variation in Ppg(r,N) is
small in the direction of constant g and the design point and the closest point are nearly
coincidental. However, in some problems, a significant difference in the location of
these points is found. The Rackwitz algorithm (Rackwitz and Fiessler, 1978) can be
used to find the design point for standard FORM, but this algorithm may fail to
converge for high values of B if the failure surface is not relatively flat. A variation of
the Rackwitz algorithm which corrects for this problem and has been generalized for
use with both standard and augmented FORM is presented in the Appendix A.

4 ERI M
4.1 ED RACK

We first consider the fatigue of an edge crack in a semi-infinite plate to investigate the
accuracy of the augmented FORM based on comparisons with Monte Carlo simulations
MCS). 1t is assumed that the cracks propagate according to the Paris model (Paris and

Erdogan, 1963)
da

= D(AK)™ | “4.1)
where da/dN is the rate of crack growth, D and m are material parameters, and AK is
the range of the stress-intensity factor. The stress-intensity factor range for an edge
crack of length a is given by AK=1.12c(na)!/2 where o is the amplitude of the applied
stress. Using this relation, equation 4.1 can integrated to obtain the number of cycles
for a crack of initial length a; to grow to a crack of length ar
Ny = 5 m

De(1.126V7)

9
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= ———-—._-ln<af /a,) for m=2. 4.3)

N
7D(1.125)’

S

where k =(2-m)/2

The material is taken to be ingot 304 stainless steel with fracture toughness Kj. = 48
MPa \[El The crack is cyclically loaded in tension-tension fatigue with an R-ratio of 0
and remote applied stress amplitude of ¢ = 250 MPa. Motivated by the experimental
findings of McGuire (1993)*, the initial crack size distribution is taken to be lognormal
with mean 0.1 mm and standard deviation 0.033 mm. The quantity m-1 is also taken to
be lognormal with mean 2.67 and standard deviation 0.75. The coefficient D and the
exponent 7 are also found to be functionally related as logD=-1.50m -7.29, the units
of D are (m/cycle)/(MPay[m)™.

It is assumed that the probability of detecting an existing crack of length a upon
inspection is (Palmberg, et al., 1987)

B
POD(a) = 1fiaﬂ , (4.4)

where the parameters o and B depend on the inspection technique.

Figure 3 shows a comparison of augmented FORM and MCS results with evenly-
spaced inspections modeled at 2.25x105, 2.75x105, 3.25x105, and 3.75x105 cycles.
Monte Carlo results obtained using 10 million realizations are not very dependable for
PAN) below about 2x100. To obtain dependable MCS results, the POD curve A in
figure 4 is used (=0.0032 mmP, B=3.5) to yield probabilities of failure greater than
2x106. The integration over the failure space is performed using the integration
technique presented in Section 3.2 with n;=100 and §=0.01. As can be seen from the
figure, excellent agreement is obtained between the two methods

In a fatigue reliability setting, it is generally desirable to have failure probabilities
much lower than those in figure 3. The probability of failure can be kept below a
desired level by scheduling inspections at uneven intervals as well as improving the

* The experimental data collected by McGuire (1993) are for fatigue crack growth from a hole in a
tension-loaded bar. The statistical data obtained for this configuration are not directly transferrable to the
edge crack configuration, but do provide a reasonable representation of fatigue crack growth in this
material.
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probability of detection through better NDE inspection techniques. Figure 5 shows
results for inspections modeled at 2.25x105, 2.55x105, 3.15x105, and 2.75x105 cycles '
and using the POD curve B in figure 4 (a=1.0 mmP, p=3.0) and using the same
integration parameters for equation (3.11) as before (n;=100, 8=0.01). Using this
inspection schedule and POD relation, the peak probability of failure is kept below
10-5. The augmented FORM and MCS estimates are in close agreement; however, as
previously stated, MCS results are not very dependable for PAN) below about 2x1076.

4.2 SEMI-ELLIPTICAL SURFACE-BREAKING CRACK.

For complicated component geometries and crack shapes, a closed form expression for
fatigue life is generally not available. This requires that the fatigue life for each
realization of random variables r be determined by numerical integration of the Paris
law or finite element simulations in which the stress-intensity factors are treated as a
function of crack size. This makes MCS infeasible for studies of extremely high
reliabilities. ~The augmented FORM requires the consideration of relatively few
realizations, ‘so these analyses are feasible when parameterizations or interpolation
schemes for the stress-intensity factors are available (see Newman and Raju, 1986, for

example).

A semi-elliptical, surface-breaking crack in a plate as shown in figure 6 is considered,
with the dimensions (in mm) A=b=5.0, t=2.5. It is assumed that there are no initial
cracks in the component. Instead, a random distribution of the cycles to initiation,
Nini, of a crack of depth 80 pm is considered. It is assumed the crack remains planar
and semi-elliptical as it propagates. Post-initiation crack growth is modeled by
applying the Paris law to the crack depth, a, and half crack width, ¢

da m

vl D(AK,) (4.52)
dC m

= D(AK, 4.
o (AK.) (4.5b)

Failure is assumed to correspond to the crack reaching a critical depth, ay.

The stress-intensity factors at points A and C, parameterized according to Newman and
Raju (1986), are given by

K,=S/(rna/ Q)" F (4.6a)
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K. =8(na/ Q)" FC, (4.6b)
where S; is the applied tensile stress, Q is the shape factor for an ellipse, and F; is a
boundary correction factor.

For this example, the initial crack length (a;) is taken to be a deterministic variable at
a;=80 pm and the initial half crack width (¢j) is taken as ¢;j=1.1g;. The maximum
allowable crack length, ar, is taken as ar = 1.25 mm, which is 50% of the plate
thickness.

The time required for a crack to reach the initiation depth, Nj,j;, is taken to be a
random variable with a lognormal distribution with mean 10 and standard deviation
0.5x106. The stress amplitude (S;) is taken to be a normally distributed random
variable with mean 250 MPa and standard deviation 7.5 MPa. The distributions for m
and D are the same as in the previous example. The POD for the inspection technique
considered in this example is shown in curve C in figure 4 (=100 mmP and f=5).

Augmented FORM results are shown in Figs. 7 and 8 for probability of failufe and
probability of failure since the last inspection, respectively. Inspections occur at
4.2x109, 5.1x109, 5.8x105, and 6.5x105. As in the previous example, the inspection
times have been adjusted so the probability of failure does not exceed 10-5 before an
inspection is performed. The entire set of data points shown was obtained with less
than two minutes of CPU on an HP 9000 series 750 computer.-

Note that the reliability results are given over a range of fatigue lives considerably
below the mean value of 'N,-m-[, This shows that even though the initiation times are
usually long, it is the few relatively short initiation times which are important to the
reliability and to the scheduling of inspections.

12




5. CONCLUSIONS.

A technique to incorporate periodic in-service inspections in a FORM anélysis of fatigue
life has been presented. The attractive feature‘ of FORM is preserved in that relatively
few realizations in the random variable space need to be considered. This is especially
important when fatigue reliability of complex components is studied, since closed form
expressions for the fatigue life are not available and numerical integration is required to

determine the fatigue life corresponding to a combination of random variables.

Previous applications of FORM to multiple inspection intervals have required that the
probability dénsity function for the crack length be determined at an initial state as well as
after each inspection. The augmented FORM only requires knowledge of the initial
distribution of crack lengths (or the distribution of cycles to crack initiation), which is'a
significant advantage. Recharacterizing the crack length distribution after each inspection
requires the consideration of a large number of realizations. Therefore, the advantage of
FORM is greatly diminished, if not lost, if the crack length distribution must be

recharacterized at various stages of the fatigue life.

Demonstrations of the augmented FORM were given for an edge crack problem (2D) and
a surface breaking crack problem (3D). The first of these permitted comparison with
Monte Carlo simulations and excellent agreement was observed. In the second problem,
the augmented FORM was shown to be computationally efficient, even for complex
components for which MCS and standard FORM were computationally infeasible.

The method has also been shown to be an effective tool for scheduling inspection times
based on a maximum probability of failure. The probability of failure was kept below a
specified level by performing non-uniform inspections, rather than evenly spaced

inspections.

13
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Figure 1b. Failure surface in standardized space
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Figure 2. Modified FORM integration scheme
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Figure 3. Probability of Failure for test case with and without inspections.
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Probability of Failure

Figure 6. Rectangular plate with surface-breaking semi-elliptical crack.
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Figure 7. Probability of failure for surface-breaking crack in a plate with inspections.
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APPENDIX A: ALGORITHM TO LOCATE DESIGN POINTS.

A variation on the Rackwitz algorithm (Rackwitz and Fiessler, 1978) is presented in
the following four steps (Harkness, 1993):

1) define failure function G(x); initialize iteration count: v=0; estimate design

. . 0 0 0
point coordinates r;; transform r; to x; .

0
2) evaluate g, —E and oG atx; , r; and compute:
or, or,
oG /oB
I =-A—/—, where A =|V B|/IV
! 57‘,- 5}‘,- l rBl/ 124
3) increment iteration count: v=v+I; update r; values in two steps:

a) rm” =" —(G— G)%;— / (VrG)2 ; adjusts magnitude of r
¥

b) r* =r (e +(1-€)I,), 0<E<1; adjusts direction of r
4) transform ;" to x; ; check for convergence:
If not converged, go to step 2.

If converged, design point found; reliability index B, =|r"|.

This algorithm minimizes B on any surface of constant g (equal to g*). Other
distinctions between this algorithm and the Rackwitz algorithm are:
1) G=G" is not enforced on each iteration. Instead, step 3a just brings 7V toward
the limit surface. In practice, GxG* after several iterations (i.e., after v>4) with
the algorithm presented above. _ A
2) The iteration parameter & is introduced to avoid the large angular corrections in

r¥ which lead to non-convergence.

An intermediate value of the iteration parameter, such as £=0.7, is recommended. For
practical purposes, convergence can be assumed to have occurred when each of the
standardized variables changes by less than 0.01 in an iteration. Convergence is
typically achieved within ten to twenty iterations with this algorithm, and lack of
convergence is uncommon.

The algorithm can be used to find design points for standard or augmented FORM.
The algorithm calls for partial derivatives of B=|r| and G with respect to r;. For

standard FORM, these derivatives are given by

A-1




P_n (A.1)
a, P
% _o6on, @2
or,  Ox; or,
If G = Nf— N and the desired service life is deterministic, then
ON.
QC_;_ =_7 (A.3) »
ox,  Ox, .
and
% = 0,.N , : (A.4)
or,

where o;N are the equivalent normal standard deviations in the Rosenblatt
transformation (see Ang and Tang, 1984). With these substitutions,
ON
oG _ 9, cl. (A.5)
or,  Ox,

For augmented FORM, the derivatives of f with respect to r; are modified to account

for the affect of the Pyqa(r,N) function on the design points (see Section 3.3). The
derivatives can now be calculated as

+§2—R (A.6)
g .

P

5
or,. B

i

where R=./p’~|rf. The derivatives of the “augmented component” R can be
calculated using finite differences.

For both standard and augmented FORM,

V,Bl=1.
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